UNCERTAINTY IN CONTACT ANGLE ESTIMATES FROM THE TANGENT METHOD

INTRODUCTION
When measuring contact angles (θ) by the tangent method, how much uncertainty is there?

OBJECTIVE
Determine the uncertainty in measurements of θ from the tangent method across the full range of wettability, from $\theta = 0^\circ$ to $\theta = 180^\circ$.

ANALYSIS
Contact angle (θ) from slopes of the baseline (m_b) and tangent line (m_t)

$$\theta = \text{ArcTan} \left(\frac{m_t - m_b}{1 + m_t \cdot m_b} \right)$$

Estimate uncertainty in contact angles ($\delta \theta$) using standard error propagation techniques,

$$\delta \theta = \left[\left(\frac{\partial \theta}{\partial m_t} \right)^2 (\delta m_t)^2 + \left(\frac{\partial \theta}{\partial m_b} \right)^2 (\delta m_b)^2 \right]^{1/2}$$

where absolute uncertainties are δm_b and δm_t, and corresponding relative uncertainties are

$$\Delta_i = \frac{\delta m_i}{m_i}, \quad \Delta_b = \frac{\delta m_b}{m_b}$$

Insert partial derivatives and rearrange terms

$$\delta \theta = \frac{1}{1 + m_t^2} \left((\delta m_t)^2 + (\delta m_b)^2 (1 + m_t^2)^2 \right)^{1/2}$$

Contact angle (θ) is related directly to the slope of the tangent line (m_t) through the tangent function,

$$|m_t| = \text{Tan} \theta$$

Further simplify relative uncertainties

$$\Delta = \Delta_i = \Delta_b = \frac{\delta m_t}{m_t}$$

Recast $\delta \theta$ as

$$\delta \theta = \text{Tan} \theta \left[1 + \cos^4 \theta \right]^{1/2} \Delta$$

RESULTS

CONCLUSION
Uncertainty in θ from the tangent method:
Small for low to moderate θ values
Increases asymptotically near $\theta = 90^\circ$